Zalman CNPS11X Performa CPU Cooler Review
By
Rafael Coelho
on December 28, 2011
The CNPS11X Performa is another member of the CNPS11X family, like the CNPS11X Extreme that we already tested. Similar to its brother, it has a V-shaped heatsink and a 120 mm fan, but it has only four heatpipes. Let’s test it and discover which one performs better.
Comparing the CNPS11X Extreme and the CNPS11X Performa, they look pretty much alike at first sight. The only features they actually share are the shape of the heatsink and the size of the fan; while the Extreme has five heatpipes, the Performa has only four. The base is also different, as the Extreme has a nickel-plated base, and the Performa has direct-touch heatpipes. The fan is dissimilar, too.
The box of the CNPS11X Performa is presented in Figure 1.
click to enlarge
Figure 1: Package
Figure 2 shows the contents of the box: the cooler itself, a small bag of thermal compound, a manual, and installation hardware.
click to enlarge
Figure 2: Accessories
Figure 3 displays the Zalman CNPS11X Performa.
click to enlarge
Figure 3: The CNPS11X Performa
This cooler is discussed in detail in the following pages.
Figure 4 illustrates the front of the heatsink, where you can see the black, simple 120 mm fan.
click to enlarge
Figure 4: Front view
Figure 5 reveals the side of the cooler, where the four heatpipes are exposed.
click to enlarge
Figure 5: Side view
The rear of the heatsink is shown in Figure 6.
click to enlarge
Figure 6: Rear view
In Figure 7, you can see the top of the heatsink, which is closed by a larger fin. Here is also a clear view of the position of the wire fan holders.
click to enlarge
Figure 7: Top view
The base of the cooler is seen in Figure 8. The heatpipes keep direct contact to the processor.
click to enlarge
Figure 8: Base
In Figure 9, you can see the CNPS11X Performa without the fan. Notice that the bottom of the heatsink is closed with a larger fin, but it has folds that direct part of the airflow to the voltage regulator of the motherboard.
click to enlarge
Figure 9: Fan removed
Figure 10 shows the PWM fan that comes with the CNPS11X Performa.
click to enlarge
Figure 10: Fan
The first step in the installation process of the CNPS11X Performa is to screw two metal clips to the base of the cooler. Figure 11 shows the clips to be used with Intel CPUs in place.
click to enlarge
Figure 11: Clips installed
Figure 12 reveals the backplate used to install the cooler. You must install the nuts at the backplate in the holes matching the socket used by your CPU.
click to enlarge
Figure 12: Backplate
Locate the backplate at the solder side of the motherboard, put the cooler over the CPU, and hold it in place using four screws, as shown in Figure 13.
click to enlarge
Figure 13: Heatsink installed
The last step is to install the fan, as you can see in Figure 14.
click to enlarge
Figure 14: Fan installed
We tested the cooler with a Core i7-860 CPU (quad-core, 2.8 GHz), which is a socket LGA1156 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 3.3 GHz (150 MHz base clock and 22x multiplier), keeping the standard core voltage (Vcore), which was the maximum stable overclock we could make with the stock cooler. Keep in mind that we could have raised the CPU clock more, but to include the stock cooler in our comparison, we needed to use this moderate overclock.
We measured noise and temperature with the CPU idle and under full load. In order to get 100% CPU usage in all threads, we ran Prime 95 25.11 with the "In-place Large FFTs" option. (In this version, the software uses all available threads.)
We compared the tested cooler to the Intel stock cooler with a copper base (included with the CPU), as well as with other coolers. Note that in the past, we tested coolers with a socket LGA775 CPU, and we retested some "old" coolers with this new methodology. This means you can find different values in older reviews than the values you will read in the next page. Every cooler was tested with the thermal compound that accompanies it.
Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings. During the tests, the left panel of the case was open.
Hardware Configuration
Operating System Configuration
Software Used
Error Margin
We adopted a 2 °C error margin, meaning temperature differences below 2 °C are considered irrelevant.
The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at idle and at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the minimum speed on the idle test and at full speed on the full load test.
Idle Processor | Processor at Full Load | ||||||
Cooler | Room Temp. | Noise | Speed | Core Temp. | Noise | Speed | Core Temp. |
Intel stock (socket LGA1156) | 14 °C | 44 dBA | 1700 rpm | 46 °C | 54 dBA | 2500 rpm | 90 °C |
Cooler Master Hyper TX3 G1 | 14 °C | 47 dBA | 2050 rpm | 33 °C | 56 dBA | 2900 rpm | 62 °C |
Zalman CNPS10X Extreme | 14 °C | 45 dBA | 1400 rpm | 27 °C | 53 dBA | 1950 rpm | 51 °C |
Thermaltake Silent 1156 | 14 °C | 44 dBA | 1200 rpm | 38 °C | 49 dBA | 1750 rpm | 69 °C |
Noctua NH-D14 | 14 °C | 49 dBA | 1250 rpm | 27 °C | 49 dBA | 1250 rpm | 53 °C |
Zalman CNPS10X Performa | 14 °C | 46 dBA | 1500 rpm | 28 °C | 52 dBA | 1950 rpm | 54 °C |
Prolimatech Megahalems | 14 °C | 40 dBA | 750 rpm | 27 °C | 60 dBA | 2550 rpm | 50 °C |
Thermaltake Frio | 14 °C | 46 dBA | 1450 rpm | 27 °C | 60 dBA | 2500 rpm | 50 °C |
Prolimatech Samuel 17 | 14 °C | 40 dBA | 750 rpm | 40 °C | 60 dBA | 2550 rpm | 63 °C |
Zalman CNPS8000A | 18 °C | 43 dBA | 1400 rpm | 39 °C | 54 dBA | 2500 rpm | 70 °C |
Spire TherMax Eclipse II | 14 °C | 55 dBA | 2200 rpm | 28 °C | 55 dBA | 2200 rpm | 53 °C |
Scythe Ninja3 | 17 °C | 39 dBA | 700 rpm | 32 °C | 55 dBA | 1800 rpm | 57 °C |
Corsair A50 | 18 °C | 52 dBA | 1900 rpm | 33 °C | 52 dBA | 1900 rpm | 60 °C |
Thermaltake Jing | 18 °C | 44 dBA | 850 rpm | 34 °C | 49 dBA | 1300 rpm | 60 °C |
GlacialTech Alaska | 18 °C | 43 dBA | 1150 rpm | 36 °C | 51 dBA | 1600 rpm | 60 °C |
Deepcool Gamer Storm | 18 °C | 43 dBA | 1100 rpm | 35 °C | 48 dBA | 1600 rpm | 62 °C |
Corsair A70 | 26 °C | 56 dBA | 1900 rpm | 40 °C | 56 dBA | 1900 rpm | 65 °C |
Deepcool Ice Blade Pro | 23 °C | 45 dBA | 1200 rpm | 38 °C | 52 dBA | 1500 rpm | 64 °C |
AC Freezer 7 Pro Rev. 2 | 23 °C | 47 dBA | 1750 rpm | 44 °C | 51 dBA | 2100 rpm | 77 °C |
Corsair H70 | 27 °C | 60 dBA | 1900 rpm | 37 °C | 60 dBA | 1900 rpm | 61 °C |
Zalman CNPS9900 Max | 27 °C | 55 dBA | 1600 rpm | 38 °C | 58 dBA | 1750 rpm | 63 °C |
Arctic Cooling Freezer 11 LP | 25 °C | 45 dBA | 1700 rpm | 51 °C | 49 dBA | 1950 rpm | 91 °C |
CoolIT Vantage | 26 °C | 60 dBA | 2500 rpm | 37 °C | 60 dBA | 2500 rpm | 62 °C |
Deepcool Ice Matrix 600 | 25 °C | 46 dBA | 1100 rpm | 41 °C | 53 dBA | 1300 rpm | 69 °C |
Titan Hati | 26 °C | 46 dBA | 1500 rpm | 40 °C | 57 dBA | 2450 rpm | 68 °C |
Arctic Cooling Freezer 13 | 27 °C | 49 dBA | 1950 rpm | 41 °C | 53 dBA | 2300 rpm | 70 °C |
Noctua NH-C14 | 26 °C | 52 dBA | 1300 rpm | 37 °C | 52 dBA | 1300 rpm | 61 °C |
Intel XTS100H | 26 °C | 49 dBA | 1200 rpm | 42 °C | 64 dBA | 2600 rpm | 68 °C |
Zalman CNPS5X SZ | 23 °C | 52 dBA | 2250 rpm | 38 °C | 57 dBA | 2950 rpm | 69 °C |
Thermaltake SlimX3 | 21 °C | 50 dBA | 2700 rpm | 46 °C | 50 dBA | 2750 rpm | 99 °C |
Cooler Master Hyper 101 | 21 °C | 50 dBA | 2600 rpm | 38 °C | 57 dBA | 3300 rpm | 71 °C |
Antec Kühler H_{2}O 620 | 19 °C | 52 dBA | 1400 rpm | 34 °C | 55 dBA | 1400 rpm | 58 °C |
Arctic Cooling Freezer 13 Pro | 20 °C | 46 dBA | 1100 rpm | 36 °C | 49 dBA | 1300 rpm | 62 °C |
GlacialTech Siberia | 22 °C | 49 dBA | 1400 rpm | 34 °C | 49 dBA | 1400 rpm | 61 °C |
Evercool Transformer 3 | 18 °C | 46 dBA | 1800 rpm | 33 °C | 51 dBA | 2250 rpm | 65 °C |
Zalman CNPS11X Extreme | 20 °C | 51 dBA | 1850 rpm | 34 °C | 56 dBA | 2050 rpm | 61 °C |
Thermaltake Frio OCK | 15 °C | 44 dBA | 1000 rpm | 27 °C | 64 dBA | 2200 rpm | 51 °C |
Prolimatech Genesis | 18 °C | 49 dBA | 1050 rpm | 30 °C | 49 dBA | 1050 rpm | 54 °C |
Arctic Cooling Freezer XTREME Rev. 2 | 15 °C | 41 dBA | 1050 rpm | 32 °C | 44 dBA | 1400 rpm | 60 °C |
NZXT HAVIK 140 | 16 °C | 48 dBA | 1250 rpm | 29 °C | 49 dBA | 1250 rpm | 55 °C |
Antec Kühler H_{2}O 920 | 18 °C | 41 dBA | 650 rpm | 29 °C | 64 dBA | 2500 rpm | 49 °C |
Zalman CNP7X LED | 18 °C | 45 dBA | 1950 rpm | 33 °C | 48 dBA | 2150 rpm | 58 °C |
EVGA Superclock | 14 °C | 43 dBA | 1300 rpm | 27 °C | 58 dBA | 2350 rpm | 47 °C |
Evercool Transformer 4 | 15 °C | 46 dBA | 1500 rpm | 26 °C | 53 dBA | 1950 rpm | 52 °C |
Xigmatek Dark Knight | 18 °C | 47 dBA | 1700 rpm | 30 °C | 53 dBA | 2150 rpm | 57 °C |
Xigmatek Aegir | 15 °C | 44 dBA | 1500 rpm | 27 °C | 50 dBA | 1950 rpm | 52 °C |
Cooler Master GeminII S524 | 16 °C | 45 dBA | 1300 rpm | 29 °C | 53 dBA | 1800 rpm | 58 °C |
Enermax ETS-T40-TA | 16 °C | 40 dBA | 1050 rpm | 28 °C | 48 dBA | 1800 rpm | 55 °C |
Corsair H80 | 14 °C | 42 dBA | 2150 rpm | 25 °C | 52 dBA | 2150 rpm | 47 °C |
Akasa Venom Voodoo | 13 °C | 40 dBA | 1000 rpm | 26 °C | 48 dBA | 1500 rpm | 51 °C |
Xigmatek Thor's Hammer | 15 °C | 44 dBA | 1500 rpm | 30 °C | 50 dBA | 2000 rpm | 55 °C |
Cooler Master Hyper 612 PWM | 19 °C | 45 dBA | 1400 rpm | 30 °C | 52 dBA | 1900 rpm | 54 °C |
Xigmatek Loki | 17 °C | 44 dBA | 1850 rpm | 34 °C | 55 dBA | 2750 rpm | 60 °C |
Cooler Master Hyper 212 EVO | 14 °C | 44 dBA | 1250 rpm | 26 °C | 50 dBA | 1750 rpm | 50 °C |
Xigmatek Gaia | 17 °C | 44 dBA | 1250 rpm | 32 °C | 46 dBA | 1500 rpm | 61 °C |
Rosewill RCX-ZAIO-92 | 21 °C | 48 dBA | 2050 rpm | 37 °C | 54 dBA | 2600 rpm | 68 °C |
Thermalright True Spirit 120 | 16 °C | 41 dBA | 1000 rpm | 30 °C | 46 dBA | 1400 rpm | 55 °C |
Corsair H100 | 20 °C | 55 dBA | 2000 rpm | 29 °C | 59 dBA | 2000 rpm | 50 °C |
Zalman CNPS12X | 20 °C | 47 dBA | 1200 rpm | 31 °C | 47 dBA | 1200 rpm | 58 °C |
Thermalright Macho | 23 °C | 41 dBA | 1100 rpm | 36 ° C | 44 dBA | 1300 rpm | 61 °C |
NZXT HAVIK 120 | 21 °C | 55 dBA | 1800 rpm | 37 °C | 55 dBA | 1800 rpm | 66 °C |
Zalman CNPS11X Performa | 19 °C | 44 dBA | 1450 rpm | 30 °C | 48 dBA | 1600 rpm | 57 °C |
In the graph below, at full load you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.
The main specifications for the Zalman CNPS11X Performa CPU cooler include:
The performance of the Zalman CNPS11X Performa is excellent for a cooler of this weight and size; it is also quiet and beautiful.
In our system, it performed better than the CNPS11X Extreme, which may sound a little strange because the Extreme is probably priced higher, but perhaps the direct touch heatpipes improved the whole design, even with one fewer heatpipe. This may also be the case because the Performa doesn’t have the installation issues that we found with the Extreme.
Because of the cooling performance with good noise level, nice look and low weight, the Zalman CNPS11X Performa receives our Silver Award.
Originally at http://www.hardwaresecrets.com/article/Zalman-CNPS11X-Performa-CPU-Cooler-Review/1462