XFX PRO 650 W Core Edition Power Supply Review
By Gabriel Torres on January 11, 2011


Introduction

Hardware Secrets Golden Award

XFX is releasing their Pro series of power supplies, with single +12 V rail, DC-DC secondary design, and 80 Plus Bronze certification. So far three models were released: 650 W, 750 W, and 850 W. Let’s see how the 650 W model fared in our tests.

Like other power supplies from XFX, members of the Pro series are manufactured by Seasonic.

XFX PRO 650 W power supply
click to enlarge
Figure 1: XFX PRO 650 W power supply

XFX PRO 650 W power supply
click to enlarge
Figure 2: XFX PRO 650 W power supply

The XFX PRO 650 W is 6.7” (170 mm) deep, with a 135 mm dual ball bearing fan (ADDA ADN512UB-A90) on its bottom part.

The new XFX PRO 650 W doesn’t have a modular cabling system. All cables are protected with nylon sleeves. The power supply comes with the following cables:

All wires are 18 AWG, which is the minimum recommended gauge.

The number of cables and connectors is simply fantastic for a 650 W product, since many manufacturers don’t add four video card power cables or a high number of SATA connectors on 650 W units.

XFX PRO 650 W power supply
click to enlarge
Figure 3: Cables

Let’s now take an in-depth look inside this power supply.

A Look Inside The XFX PRO 650 W

We decided to disassemble this power supply to see what it looks like inside, how it is designed, and what components are used. Please read our Anatomy of Switching Power Supplies tutorial to understand how a power supply works and to compare this power supply to others.

This page will be an overview, and then in the following pages we will discuss in detail the quality and ratings of the components used.

XFX PRO 650 W power supply
click to enlarge
Figure 4: Top view

XFX PRO 650 W power supply
click to enlarge
Figure 5: Front quarter view

XFX PRO 650 W power supply
click to enlarge
Figure 6: Rear quarter view

XFX PRO 650 W power supply
click to enlarge
Figure 7: Printed circuit board

Transient Filtering Stage

As we have mentioned in other articles and reviews, the first place we look when opening a power supply for a hint about its quality, is its filtering stage. The recommended components for this stage are two ferrite coils, two ceramic capacitors (Y capacitors, usually blue), one metalized polyester capacitor (X capacitor), and one MOV (Metal-Oxide Varistor). Very low-end power supplies use fewer components, usually removing the MOV and the first coil. 

The transient filtering stage of the XFX PRO 650 W is impeccable, coming with all required components plus one extra X capacitor and four extra Y capacitors.

XFX PRO 650 W power supply
click to enlarge
Figure 8: Transient filtering stage (part 1)

XFX PRO 650 W power supply
click to enlarge
Figure 9: Transient filtering stage (part 2)

In the next page we will have a more detailed discussion about the components used in the XFX PRO 650 W.

Primary Analysis

On this page we will take an in-depth look at the primary stage of the XFX PRO 650 W For a better understanding, please read our Anatomy of Switching Power Supplies tutorial.

This power supply uses two GBU606 rectifying bridges connected in parallel, attached to an individual heatsink. Each bridge supports up to 6 A at 100° C so, in theory, you would be able to pull up to 1,380 W from a 115 V power grid. Assuming 80% efficiency, the bridges would allow this unit to deliver up to 1,104 W without burning themselves out. Of course, we are only talking about these components, and the real limit will depend on all the other components in this power supply.

XFX PRO 650 W power supply
click to enlarge
Figure 10: Rectifying bridges

The active PFC circuit uses two SPP20N60C3 MOSFETs, which are capable of delivering up to 20.7 A at 25° C or up to 13.1 A at 100° C (note the difference temperature makes) in continuous mode, or up to 62.1 A in pulse mode at 25° C, each. These transistors present a 190 mΩ resistance when turned on, a characteristic called RDS(on). The lower this number the better, meaning that the transistors will waste less power and the power supply will achieve a higher efficiency. It is interesting to note how, in order to improve thermal dissipation, the manufacturer added a copper plate between these transistors and the aluminum heatsink (see Figure 11).

XFX PRO 650 W power supply
click to enlarge
Figure 11: Active PFC transistors

This power supply uses two electrolytic capacitors to filter the output from the active PFC circuit. The use of more than one capacitor here has absolute nothing to do with the “quality” of the power supply, as laypersons may assume (including people without the proper background in electronics doing power supply reviews around the web). Instead of using one big capacitor, manufacturers may choose to use two or more smaller components that will give the same total capacitance, in order to better accommodate space on the printed circuit board. The XFX PRO 650 W uses two 220 µF x 400 V capacitors connected in parallel; this is the equivalent of one 440 µF x 400 V capacitor. These capacitors are Japanese, from Rubycon, and labeled at 105° C.

In the switching section, another two SPP20N60C3 MOSFET transistors are used, installed in the two-transistor forward configuration.

XFX PRO 650 W power supply
click to enlarge
Figure 12: One of the switching transistors

The primary is controlled by a CM6802 active PFC/PWM combo controller.

XFX PRO 650 W power supply
click to enlarge
Figure 13: Active PFC/PWM combo controller

Now let's take a look at the secondary of this power supply.

Secondary Analysis

This power supply uses a DC-DC project in its secondary, meaning that this unit is basically a +12 V power supply. The +5 V and +3.3 V outputs are produced by two smaller switching power supplies connected to the +12 V rail. This design is used to increase efficiency.

The +12 V output make use of four SBR30A50CT Schottky rectifiers, each one capable of handling up to 30 A (15 A per internal diode at 110° C, 0.55 V maximum voltage drop). From the eight available diodes (two per rectifier pack), three are used in the direct rectification and five are used in the “freewheeling” part of the rectification.

XFX PRO 650 W power supply
click to enlarge
Figure 14: +12 V rectifiers

As explained, the +5 V and +3.3 V outputs are generated using two DC-DC converters (i.e., two switching power supplies). Usually power supplies using this design have these two converters installed on separate daughterboards, but in the XFX PRO 650 W they are available on the same board, shown in Figures 15 and 16. The two converters are managed by the same PWM chip (APW7159), and use seven APM2556N MOSFET transistors, each one being able to handle up to 160 A at 25° C or 90 A at 100° C with an RDS(on) of only 4.5 mΩ.

XFX PRO 650 W power supply
click to enlarge
Figure 15: The +5 V and +3.3 V DC-DC converter

XFX PRO 650 W power supply
click to enlarge
Figure 16: The +5 V and +3.3 V DC-DC converter

The secondary is monitored by a PS223 integrated circuit, which supports over voltage protection (OVP), under voltage protection (UVP), over current protection (OCP), and over temperature protection (OTP). This integrated circuit has four OCP channels (+3.3 V, +5V and two +12 V), but the manufacturer decided to use only one of the +12 V channels, making this a single-rail power supply.

XFX PRO 650 W power supply
click to enlarge
Figure 17: Monitoring circuit

All electrolytic capacitors used in the secondary are also Japanese, from Chemi-Con, and labeled at 105° C.

Power Distribution

In Figure 18, you can see the power supply label containing all the power specs.

XFX PRO 650 W power supply
click to enlarge
Figure 18: Power supply label

Since this unit has a single +12 V rail, there is not much to talk about here.

Let’s now see if this power supply can really deliver 650 W.

Load Tests

We conducted several tests with this power supply, as described in the article Hardware Secrets Power Supply Test Methodology.  

First we tested this power supply with five different load patterns, trying to pull around 20%, 40%, 60%, 80%, and 100% of its labeled maximum capacity (actual percentage used listed under “% Max Load”), watching the behavior of the reviewed unit under each load. In the table below, we list the load patterns we used and the results for each load.

If you add all the powers listed for each test, you may find a different value than what is posted under “Total” below. Since each output can have a slight variation (e.g., the +5 V output working at +5.10 V), the actual total amount of power being delivered is slightly different than the calculated value. In the “Total” row, we are using the real amount of power being delivered, as measured by our load tester.

The +12VA and +12VB inputs listed below are the two +12 V independent inputs from our load tester. During our tests, the +12VA and +12VB input were connected to the power supply single +12 V rail (the EPS12V connector was installed on the +12VB input of our load tester).

Input

Test 1

Test 2

Test 3

Test 4

Test 5

+12VA

5 A (60 W)

10 A (120 W)

15 A (180 W)

20 A (240 W)

23.75 A (285 W)

+12VB

5 A (60 W)

10 A (120 W)

15 A (180 W)

20 A (240 W)

23.75 A (285 W)

+5V

1 A (5 W)

2 A (10 W)

4 A (20 W)

6 A (30 W)

8 A (40 W)

+3.3 V

1 A (3.3 W)

2 A (6.6 W)

4 A (13.2 W)

6 A (19.8 W)

8 A (26.4 W)

+5VSB

1 A (5 W)

1 A (5 W)

1.5 A (7.5 W)

2 A (10 W)

2.5 A (12.5 W)

-12 V

0.5 A (6 W)

0.5 A (6 W)

0.5 A (6 W)

0.5 A (6 W)

0.5 A (6 W)

Total

139.4 W

267.4 W

393.6 W

542.9 W

649.9 W

% Max Load

21.4%

41.1%

60.6%

83.5%

100.0%

Room Temp.

47.2° C

45.2° C

45.8° C

47.6° C

48.0° C

PSU Temp.

45.9° C

46.6° C

47.0° C

47.9° C

49.1° C

Voltage Regulation

Pass

Pass

Pass

Pass

Pass

Ripple and Noise

Pass

Pass

Pass

Pass

Pass

AC Power

167.2 W

313.1 W

462.4 W

648.0 W

789.0 W

Efficiency

83.4%

85.4%

85.1%

83.8%

82.4%

AC Voltage

111.1 V

110.9 V

107.7 V

105.8 V

104.2 V

Power Factor

0.985

0.992

0.996

0.998

0.998

Final Result

Pass

Pass

Pass

Pass

Pass

The XFX PRO 650 W passed our test with flying colors, being able to deliver its labeled wattage at high temperatures.

Efficiency was excellent, between 82.4% and 85.4%. This is great, because we are tired of seeing 80 Plus Bronze power supplies that can’t achieve 82% minimum at high temperatures, and the XFX PRO 650 W W can.

Voltage regulation was superb, with all voltages within 3% of their nominal values. The ATX12V specification allows voltages to be up to 5% from their nominal values (10% for the -12 V output). Therefore this power supply presents voltages closer to their nominal values than necessary all the time.

Noise and ripple levels were always extremely low. Below you can see the results for the power supply outputs during test number five. The maximum allowed is 120 mV for the +12 V and -12 V outputs, and 50 mV for the +5 V, +3.3 V, and +5VSB outputs. All values are peak-to-peak figures.

XFX PRO 650 W power supply
click to enlarge
Figure 19: +12VA input from load tester during test five at 649.9 W (27.2 mV)

XFX PRO 650 W power supply
click to enlarge
Figure 20: +12VB input from load tester during test five at 649.9 W (42.8 mV)

XFX PRO 650 W power supply
click to enlarge
Figure 21: +5V rail during test five at 649.9 W (9.8 mV)

XFX PRO 650 W power supply
click to enlarge
Figure 22: +3.3 V rail during test five at 649.9 W (9.6 mV)

Let’s see if we can pull even more from the XFX PRO 650 W.

Overload Tests

Below you can see the maximum we could pull from this power supply. We couldn’t pull more than that because the power supply shut down, showing that its protections are working just fine.

Input

Overload Test

+12VA

30 A (360 W)

+12VB

30 A (360 W)

+5V

10 A (50 W)

+3.3 V

10 A (33 W)

+5VSB

1 A (5 W)

-12 V

0.5 A (6 W)

Total

814.9 W

% Max Load

125.4%

Room Temp.

45.0° C

PSU Temp.

49.6° C

AC Power

1,029 W

Efficiency

79.2%

AC Voltage

100.3 V

Power Factor

0.998

Main Specifications

The specs of the XFX PRO 650 W include:

Conclusions

XFX is impressing us with their line of power supplies, but this time they were able to outdo themselves. While writing our review and checking the numbers, we thought that this would be a nice USD 100 power supply, just to discover that XFX will be offering the PRO 650 W for only USD 80 after an instant USD 15 rebate. This is really impressive, as you will be able to take home a high-quality power supply at an outstanding price.

The highlights of the PRO 650 W include efficiency between 82% and 85% at high temperatures (several 80 Plus Bronze power supplies we review fail to deliver 82% minimum efficiency at high temperatures, which fortunately isn’t the case with the reviewed product), very tight 3% voltage regulation (i.e., voltages closer to their nominal values than necessary), ultra low noise and ripple levels, five-year warranty, and a terrific number of cables and connectors for a 650 W power supply (four video card power connectors and eight SATA power connectors).

This power supply is already being sold in Europe and XFX will start selling it in the US very soon.

In summary, the XFX PRO 650 W provides an outstanding cost/benefit ratio if you are shopping for a high-quality power supply at an affordable price.

Originally at http://www.hardwaresecrets.com/article/XFX-PRO-650-W-Core-Edition-Power-Supply-Review/1165


© 2004-14, Hardware Secrets, LLC. All Rights Reserved.

Total or partial reproduction of the contents of this site, as well as that of the texts available for downloading, be this in the electronic media, in print, or any other form of distribution, is expressly forbidden. Those who do not comply with these copyright laws will be indicted and punished according to the International Copyrights Law.

We do not take responsibility for material damage of any kind caused by the use of information contained in Hardware Secrets.