FSP Aurum Xilenser 500FLD Power Supply Review
By Gabriel Torres on August 31, 2012


Introduction

Hardware Secrets Golden Award

The Aurum Xilenser is the latest power supply series from FSP, using a fanless design and featuring the 80 Plus Gold certification. So far, there are two wattage options available, 400 W and 500 W, with or without a modular cabling system. We will review the 500 W without a modular cabling system, dubbed the 500FLD.

By the way, we believe the proper name for this series should be “Xilencer” and not “Xilenser” since the correct spelling for the word it is derived from is “silencer.”

The Aurum Xilenser is based on a new platform.

FSP Xilencer 500w
click to enlarge
Figure 1: FSP Aurum Xilenser 500FLD power supply

FSP Xilencer 500w
click to enlarge
Figure 2: FSP Aurum Xilenser 500FLD power supply

The FSP Aurum Xilenser 500FLD is 6.3” (160 mm) deep; it doesn’t have a fan.

The reviewed power supply doesn’t have a modular cabling system. All cables are protected with nylon sleeves, but the sleeves don’t come from inside the unit. This power supply comes with the following cables:

All wires are 18 AWG, which is the minimum recommended gauge, except the +12 V (yellow) wires on the main motherboard cable, which are thicker (16 AWG). The cable configuration is adequate for a 500 W product.

FSP Xilencer 500w
click to enlarge
Figure 3: Cables

Let’s now take an in-depth look inside this power supply.

A Look Inside the FSP Aurum Xilenser 500FLD

We decided to disassemble this power supply to see what it looks like inside, how it is designed, and what components are used. Please read our “Anatomy of Switching Power Supplies” tutorial to understand how a power supply works and to compare this power supply to others.

On this page we will have an overall look, and then in the following pages we will discuss in detail the quality and ratings of the components used.

FSP Xilencer 500w
click to enlarge
Figure 4: Top view

FSP Xilencer 500w
click to enlarge
Figure 5: Front quarter view

FSP Xilencer 500w
click to enlarge
Figure 6: Rear quarter view

FSP Xilencer 500w
click to enlarge
Figure 7: The printed circuit board

Transient Filtering Stage

As we have mentioned in other articles and reviews, the first place we look when opening a power supply for a hint about its quality, is its filtering stage. The recommended components for this stage are two ferrite coils, two ceramic capacitors (Y capacitors, usually blue), one metalized polyester capacitor (X capacitor), and one MOV (Metal-Oxide Varistor). Very low-end power supplies use fewer components, usually removing the MOV and the first coil.

In the transient filtering stage, this power supply has two Y capacitors and one X capacitor more than the minimum required.

FSP Xilencer 500w
click to enlarge
Figure 8: Transient filtering stage (part 1)

FSP Xilencer 500w
click to enlarge
Figure 9: Transient filtering stage (part 2)

On the next page, we will have a more detailed discussion about the components used in the FSP Aurum Xilenser 500FLD.

Primary Analysis

On this page, we will take an in-depth look at the primary stage of the FSP Aurum Xilenser 500FLD. For a better understanding, please read our “Anatomy of Switching Power Supplies” tutorial.

This power supply uses one GBJ25L06 rectifying bridge, which is attached to an individual heatsink. This bridge supports up to 25 A at 115° C. So, in theory, you would be able to pull up to 2,875 W from a 115 V power grid. Assuming 80% efficiency, this bridge would allow this unit to deliver up to 2,300 W without burning itself out (or 2,588 W at 90% efficiency). Of course, we are only talking about this particular component. The real limit will depend on all the components combined in this power supply.

FSP Xilencer 500w
click to enlarge
Figure 10: Rectifying bridge

The active PFC circuit uses three STF22NM60N MOSFETs, each supporting up to 16 A at 25° C or 10 A at 100° C in continuous mode (see the difference temperature makes) or 64 A at 25° C in pulse mode. These transistors present a maximum 220 mΩ resistance when turned on, a characteristic called RDS(on). The lower the number the better, meaning that the transistor will waste less power, and the power supply will have a higher efficiency.

FSP Xilencer 500w
click to enlarge
Figure 11: Active PFC diode and transistors

The active PFC circuit is controlled by an ICE2PCS02 integrated circuit.

FSP Xilencer 500w
click to enlarge
Figure 12: Active PFC controller

The output of the active PFC circuit is filtered by two 220 µF x 450 V Japanese electrolytic capacitors, from Matsushita (Panasonic), labeled at 105° C. They are connected in parallel and, therefore, the equivalent of one 440 µF x 450 V capacitor.

FSP Xilencer 500w
click to enlarge
Figure 13: Capacitors

In the switching section, another two STF22NM60N MOSFETs are used in a resonant configuration. The specifications for these transistors were already discussed above.

FSP Xilencer 500w
click to enlarge
Figure 14: Switching transistors

The switching transistors are controlled by a CM6901 integrated circuit.

FSP Xilencer 500w
click to enlarge
Figure 15: Resonant controller

Another interesting feature present in the primary of this power supply that is worth mentioning is the presence of a SENZero chip (SEN013DG), which reduces the amount of energy the power supply consumes when in standby mode.

FSP Xilencer 500w
click to enlarge
Figure 16: The SENZero chip

Let’s now take a look at the secondary of this power supply.

Secondary Analysis

The FSP Aurum Xilenser 500FLD uses a synchronous design, meaning that the rectifiers were replaced with MOSFETs. Also, this power supply uses a DC-DC design, meaning that it is basically a +12 V power supply, with the +5 V and +3.3 V outputs being generated through two smaller switching power supplies connected to the +12 V rail. Both designs are used to increase efficiency.

The +12 V output uses four  IPD036N04L G MOSFETs, each supporting up to 90 A at 25° C or 87 A at 100° C in continuous mode or up to 400 A at 25° C in pulse mode, with a maximum RDS(on) of 3.6 mΩ. These transistors are located on the solder side of the printed circuit board, and the power supply case is used as a heatsink for them.

FSP Xilencer 500w
click to enlarge
Figure 17: The +12 V transistors

The DC-DC converters are located on a daughterboard and are controlled by an APW7159 integrated circuit. Each converter uses four IRLR8729PBF MOSFETs, each supporting up to 58 A at 25° C or 41 A at 100° C in continuous mode or up to 260 A at 25° C in pulse mode, with a maximum RDS(on) of 8.9 mΩ.

FSP Xilencer 500w
click to enlarge
Figure 18: The DC-DC converters

FSP Xilencer 500w
click to enlarge
Figure 19: The DC-DC converters

The outputs of this power supply are monitored by a GR8323 integrated circuit. This chip supports over voltage (OVP), under voltage (UVP), and overcurrent (OCP) protections. There are two +12 V over current protection channels, correctly matching the number of +12 V rails advertised by the manufacturer.

FSP Xilencer 500w
click to enlarge
Figure 20: Monitoring circuit

The electrolytic capacitors from the secondary are also Japanese, from Rubycon and Chemi-Con, and labeled at 105° C, as usual.

FSP Xilencer 500w
click to enlarge
Figure 21: Capacitors

Power Distribution

In Figure 22, you can see the power supply label containing all the power specs.

FSP Xilencer 500w
click to enlarge
Figure 22: Power supply label

The manufacturer advertises this unit as having two +12 V rails, which is correct, since the monitoring integrated circuit has two +12 V over current channels. The two rails are distributed as follows:

How much power can this unit really deliver? Let’s find out.

Load Tests

We conducted several tests with this power supply, as described in the article, “Hardware Secrets Power Supply Test Methodology.”   

First, we tested this power supply with five different load patterns, trying to pull around 20%, 40%, 60%, 80%, and 100% of its labeled maximum capacity (actual percentage used listed under “% Max Load”), watching the behavior of the reviewed unit under each load. In the table below, we list the load patterns we used and the results for each load.

If you add all the powers listed for each test, you may find a different value than what is posted under “Total” below. Since each output can have a slight variation (e.g., the +5 V output working at 5.10 V), the actual total amount of power being delivered is slightly different than the calculated value. In the “Total” row, we are using the real amount of power being delivered, as measured by our load tester.

The +12VA and +12VB inputs listed below are the two +12 V independent inputs from our load tester. During this test, the +12VA input was connected to the +12V1 and +12V2 rails, while the +12VB input was also connected to the +12V1 and +12V2 rails.

Input

Test 1

Test 2

Test 3

Test 4

Test 5

+12VA

3.5 A (42 W)

7 A (10.5 W)

10.5 A (126 W)

14 A (168 W)

17.5 A (210 W)

+12VB

3.5 A (42 W)

7 A (10.5 W)

10.5 A (126 W)

14 A (168 W)

17 A (204 W)

+5 V

1 A (5 W)

2 A (10 W)

4 A (20 W)

6 A (30 W)

8 A (40 W)

+3.3 V

1 A (3.3 W)

2 A (6.6 W)

4 A (13.2 W)

6 A (19.8 W)

8 A (26.4 W)

+5VSB

1 A (5 W)

1.5 A (7.5 W)

2 A (10 W)

2.5 A (12.5 W)

3 A (15 W)

-12 V

0.5 A (6 W)

0.5 A (6 W)

0.5 A (6 W)

0.5 A (6 W)

0.5 A (6 W)

Total

104.1 W

197.0 W

300.1 W

402.4 W

503.4 W

% Max Load

20.8%

39.4%

60.0%

80.5%

100.7%

Room Temp.

46.1° C

44.5° C

44.3° C

44.8° C

46.1° C

PSU Temp.

51.1° C

51.4° C

55.7° C

56.4° C

58.0° C

Voltage Regulation

Pass

Pass

Pass

Pass

Pass

Ripple and Noise

Pass

Pass

Pass

Pass

Pass

AC Power

117.4 W

217.0 W

331.1 W

448.5 W

569.5 W

Efficiency

88.7%

90.8%

90.6%

89.7%

88.4%

AC Voltage

114.0 V

112.5 V

111.5 V

110.4 V

109.1 V

Power Factor

0.991

0.996

0.997

0.997

0.998

Final Result

Pass

Pass

Pass

Pass

Pass

The 80 Plus Gold certification guarantees minimum efficiencies of 87% at 20% load, 90% at 50% load, and 87% at 100% load. In our tests, the FSP Aurum Xilenser 500FLD surpassed these numbers, which is outstanding.

Voltage regulation for the positive voltages was excellent, closer to their nominal values (3% regulation) during all tests. The -12 V output went outside this tighter regulation during tests one (at -11.38 V), two (at -11.47 V), and three (at -11.63 V), but was still inside the proper range. The same thing happened with the +5VSB output during test five, at +4.78 V. The ATX12V specification states that positive voltages must be within 5% of their nominal values, and negative voltages must be within 10% of their nominal values.

Let’s discuss the ripple and noise levels on the next page.

Ripple and Noise Tests

Voltages at the power supply outputs must be as “clean” as possible, with no noise or oscillation (also known as “ripple”). The maximum ripple and noise levels allowed are 120 mV for +12 V and -12 V outputs; and 50 mV for +5 V, +3.3 V and +5VSB outputs. All values are peak-to-peak figures. We consider a power supply as being top-notch if it can produce half or less of the maximum allowed ripple and noise levels.

The FSP Aurum Xilenser 500FLD provided relatively low ripple and noise levels. See results below.

Input

Test 1

Test 2

Test 3

Test 4

Test 5

+12VA

40.0 mV

38.8 mV

44.2 mV

52.8 mV

55.8 mV

+12VB

38.6 mV

37.4 mV

41.6 mV

48.2 mV

51.0 mV

+5 V

11.8 mV

18.4 mV

24.0 mV

30.4 mV

36.6 mV

+3.3 V

7.8 mV

9.0 mV

11.2 mV

11.2 mV

12.8 mV

+5VSB

12.0 mV

11.4 mV

16.4 mV

21.2 mV

27.4 mV

-12 V

41.4 mV

45.4 mV

55.6 mV

65.4 mV

73.6 mV

Below you can see the waveforms of the outputs during test five.

FSP Xilencer 500w
click to enlarge
Figure 23: +12VA input from load tester during test five at 503.4 W (55.8 mV)

FSP Xilencer 500w
click to enlarge
Figure 24: +12VB input from load tester during test five at 503.4 W (51 mV)

FSP Xilencer 500w
click to enlarge
Figure 25: +5V rail during test five at 503.4 W (36.6 mV)

FSP Xilencer 500w
click to enlarge
Figure 26: +3.3 V rail during test five at 503.4 W (12.8 mV)

Overload Tests

Below you can see the maximum we could pull from this power supply. The objective of this test is to see if the power supply has its protection circuits working properly. This unit passed this test, as it shut down when we tried to pull more than what is listed in the table below. During this test, noise and ripple levels were still below the maximum allowed and voltages were within 3% of their nominal values, except for the +5VSB output, which dropped below the minimum allowed, at +4.64 V.

Input

Overload Test

+12VA

22 A (264 W)

+12VB

22 A (264 W)

+5 V

12 A (60 W)

+3.3 V

12 A (39.6 W)

+5VSB

3 A (15 W)

-12 V

0.5 A (6 W)

Total

644.4 W

% Max Load

128.9%

Room Temp.

46.6° C

PSU Temp.

59.4° C

AC Power

744 W

Efficiency

86.6%

AC Voltage

108.4 V

Power Factor

0.998

Main Specifications

The main specifications for the FSP Aurum Xilenser 500FLD power supply include:

Conclusions

The FSP Aurum Xilenser 500FLD is a great power supply, with efficiency between 88% and 90%, good voltage regulation and relatively low noise and ripple levels. The cable configuration is very good for a 500 W unit.

The main highlight of this product is, of course, its fanless design, meaning that it is targeted to users who want to build a computer that won’t generate noise while turned on.

The problem with fanless power supplies is their price. Since heat is the number one enemy of electronic components, manufacturers have to use high-grade parts, which increase the price of the product.

The Aurum Xilenser 500FLD is no exception, as it will reach the U.S. market with a suggested price of USD 150, which would be very high for a “normal” 500 W unit. However, when we consider that the X-400 Fanless from Seasonic arrived on the market with a suggested price of USD 140, and the SilverStone Nightjar 500 W arrived on the market with a suggested price of USD 200, we can easily conclude that the price of the Aurum Xilenser 500FLD is fair for what it has to offer.

Originally at http://www.hardwaresecrets.com/article/FSP-Aurum-Xilenser-500FLD-Power-Supply-Review/1627


© 2004-13, Hardware Secrets, LLC. All Rights Reserved.

Total or partial reproduction of the contents of this site, as well as that of the texts available for downloading, be this in the electronic media, in print, or any other form of distribution, is expressly forbidden. Those who do not comply with these copyright laws will be indicted and punished according to the International Copyrights Law.

We do not take responsibility for material damage of any kind caused by the use of information contained in Hardware Secrets.