Details on Intelís Forthcoming 45 nm Manufacturing Technology
By Gabriel Torres on January 29, 2007

Last week Intel described details from their forthcoming 45 nm manufacturing process and some details of the first 45 nm processors, codenamed Penryn. In this article we will explain what is new on Intelís 45 nm process and Penryn CPUs.

The main problem in shifting to a smaller manufacturing technology Ė i.e., using smaller transistors Ė is leakage current. While on old CPUs using bigger manufacturing technology leakage isnít such a big issue, when we are talking about CPUs with very small transistors, leakage can represent not only a big waste of power but also overheating. On the other hand, smaller transistors translate into a faster switching speed Ė i.e., higher performance.

Transistors inside the CPU are traditionally built using a polysilicon gate electrode and a silicon oxide gate dielectric, a material referred as a ďlow-KĒ material, meaning a relatively high leakage current.

For years the Holy Graal in the CPU industry has been the development of a high-K dielectric material to be used on the transistor gate. This material would present a far lower leakage current compared to a low-K material like silicon oxide.

What Intel has announced last week is that they developed such material (Hafnium-based, a chemical material on the same column of Zirconium and Titanium on the periodic table) and is using it on their 45 nm manufacturing process. Also, the gate electrode has been changed from polysilicon to metal (Intel didnít say which material is used). The combination of a metallic gate electrode and a high-K dielectric material produces a higher current when the transistor is ďonĒ and a lower current when the transistor is ďoffĒ Ė translating into a lower leakage current.

What is interesting is that this technology has been used for one year now Ė Intelís 45-nm static RAM chips use this technology, but Intel didnít disclose this when their 45-nm SRAM chips were released.

45 nm manufacturing process
click to enlarge
Figure 1: Comparison between a transistor used on current Intel CPUs and the new high-K transistor.

The main advantages brought by the high-K + metal gate transistors used on Intelís new 45 nm manufacturing process compared to the current 65 nm manufacturing process are:

Intel also has announced that they will keep their roadmap and will be announcing their 32 nm manufacturing process in 2009 and their 22 nm manufacturing process in 2011.

The first CPU generation using the new 45-nm manufacturing process is called Penryn.

Penryn isnít the codename of a specific processor, but the codename of the 45 nm core that will be used by mobile, desktop and server CPUs.

Intel didnít disclosure a lot about these new CPUs. All they said was that they have prototypes right now running several different operating systems, there will be dual-core and quad-core versions (with 410 million transistors and 820 million transistors, respectively), they will use a new SSE instruction set, called SSE4 (that will bring 47 new SSE instructions to the CPU), larger caches and new microarchitecture features.

Read our article Penryn Core New Features for a complete list of new features that will be brought by Penryn core.

Originally at

© 2004-15 Clube do Hardware, all Rights Reserved.

Total or partial reproduction of the contents of this site, as well as that of the texts available for downloading, be this in the electronic media, in print, or any other form of distribution, is expressly forbidden. Those who do not comply with these copyright laws will be indicted and punished according to the International Copyrights Law.

We do not take responsibility for material damage of any kind caused by the use of information contained in Hardware Secrets.