Cooler Master Seidon 120XL CPU Cooler Review
By Rafael Otto Coelho on June 12, 2013


Introduction

Hardware Secrets Golden Award

The Cooler Master Seidon 120XL is a liquid cooling system for processors. It has a 120 mm radiator with two 120 mm fans. Let’s test it.

As with any sealed liquid cooling system, the Seidon 120XL comes with the coolant liquid pre-filled inside the loop (block, radiator, pump, and hoses). We recently tested a simpler version of this product, the Seidon 120M. The main difference between them is the thickness of the radiator (28 mm in the 120M vs. 38 mm in the 120XL), and the fact that the Seidon 120XL comes with two fans.

Figure 1 shows the box of the Cooler Master Seidon 120XL.

Cooler Master Seidon 120XL
click to enlarge
Figure 1: Package

Figure 2 shows the contents of the box: the radiator-block set, fans, a Y-harness, manual, a small syringe of thermal compound, and installation hardware.

Cooler Master Seidon 120XL
click to enlarge
Figure 2: Accessories

This watercooler is discussed in detail in the following pages.

The Cooler Master Seidon 120XL

The sealed radiator-block system is shown in Figure 3. At the left is the radiator that transfers the heat from the liquid to the air; at the right you can see the block that transfers the heat from the CPU to the circulating liquid. There is a cable on the block with a three-pin connector, which draws power for the integrated pump.

Cooler Master Seidon 120XL
click to enlarge
Figure 3: The Cooler Master Seidon 120XL

Figures 4 and 5 reveal the radiator of the Cooler Master Seidon 120XL.

Cooler Master Seidon 120XL
click to enlarge
Figure 4: Radiator

Cooler Master Seidon 120XL
click to enlarge
Figure 5: Radiator

The Cooler Master Seidon 120XL (Cont’d)

Figure 6 shows the top of the block, where the pump that makes the liquid flow is integrated. There is a blue LED that glows while the pump is working.

Cooler Master Seidon 120XL
click to enlarge
Figure 6: Block

The base of the block, which is made of copper, is revealed in Figure 7. Unlike most sealed liquid cooling systems, the thermal compound does not come preapplied. The base is not mirrored.

Cooler Master Seidon 120XL
click to enlarge
Figure 7: Base

Figure 8 illustrates the 120 mm PWM fans that come with the Cooler Master Seidon 120XL, model DF1202512RFUN (120 mm, rifle bearing, 2,400 rpm, 4.44 W, 86.15 cfm, 40 dBA.) Each fan comes with a rubber layer that helps to absorb vibrations.

Cooler Master Seidon 120XL
click to enlarge
Figure 8: Fans

Installation

In Figure 9, you can see the backplate for installing the Seidon 120XL on Intel socket LGA775, LGA1150, LGA1155, LGA1156, and LGA1366 systems. Socket LGA2011 CPUs use the stock backplate. There is also a backplate for AMD computers.

Cooler Master Seidon 120XL
click to enlarge
Figure 9: Backplate

In order to install the cooler, you have to attach two holders to the block. Figure 10 shows the holders for Intel systems attached to the block; there is also a pair of holders for use with AMD processors.

Cooler Master Seidon 120XL
click to enlarge
Figure 10: Holders installed

Put the backplate on the solder side of the motherboard, and install the four nuts shown in Figure 11 on the component side.

Cooler Master Seidon 120XL
click to enlarge
Figure 11: Nuts

The last step is to install the system inside the computer, attaching the block on the CPU and the radiator on the rear panel. We installed the fans in a push-pull configuration, both blowing outwards.

Cooler Master Seidon 120XL
click to enlarge
Figure 12: Installation finished

How We Tested

We tested the cooler with a Core i5-2500K CPU (quad-core, 3.3 GHz), which is a socket LGA1155 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 4.0 GHz (100 MHz base clock and x40 multiplier), with 1.3 V core voltage (Vcore). This CPU was able to reach 4.8 GHz with its default core voltage, but at this setting, the processor enters thermal throttling when using mainstream coolers, reducing the clock and thus the thermal dissipation. This could interfere with the temperature readings, so we chose to maintain a moderate overclocking.

We measured noise and temperature with the CPU under full load. In order to get 100% CPU usage in all cores, we ran Prime 95 25.11 with the “In-place Large FFTs” option. (In this version, the software uses all available threads.)

We compared the tested cooler to other coolers we already tested, and to the stock cooler that comes with the Core i5-2500K CPU. Note that the results cannot be compared to measures taken on a different hardware configuration, so we retested some “old” coolers with this new methodology. This means you can find different values in older reviews than the values you will read on the next page. Every cooler was tested with the thermal compound that comes with it.

Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings.

During the tests, the panels of the computer case were closed. The front and rear case fans were spinning at minimum speed in order to simulate the “normal” cooler use on a well-ventilated case. We assume that is the common setup used by a cooling enthusiast or overclocker.

The sound pressure level (SPL) was measured with a digital noise meter, with its sensor placed near the top opening of the case. This measurement is only for comparison purposes, because a precise SPL measurement needs to be made inside an acoustically insulated room with no other noise sources, which is not the case here.

Hardware Configuration

Operating System Configuration

Software Used

Error Margin

We adopted a 2°C error margin, meaning temperature differences below 2°C are considered irrelevant.

Our Tests

The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the full speed.

Cooler Room Temp. Noise Speed Core Temp. Temp. Diff.
Intel stock cooler 18 °C 41 dBA 2000 rpm 97 °C 79 °C
Cooler Master Hyper TX3 18 °C 50 dBA 2850 rpm 69 ºC 51 °C
Corsair A70 23 °C 51 dBA 2000 rpm 66 ºC 43 °C
Corsair H100 26 °C 62 dBA 2000 rpm 64 ºC 38 °C
EVGA Superclock 26 °C 57 dBA 2550 rpm 67 ºC 41 °C
NZXT HAVIK 140 20 °C 46 dBA 1250 rpm 65 ºC 45 °C
Thermalright True Spirit 120 26 °C 42 dBA 1500 rpm 82 °C 56 °C
Zalman CNPS12X 26 °C 43 dBA 1200 rpm 71 °C 45 °C
Zalman CNPS9900 Max 20 °C 51 dBA 1700 rpm 62 °C 42 °C
Titan Fenrir Siberia Edition 22 °C 50 dBA 2400 rpm 65 °C 43 °C
SilenX EFZ-120HA5 18 °C 44 dBA 1500 rpm 70 °C 52 °C
Noctua NH-L12 20 °C 44 dBA 1450 rpm 70 °C 50 °C
Zalman CNPS8900 Extreme 21 °C 53 dBA 2550 rpm 71 °C 50 °C
Gamer Storm Assassin 15 °C 48 dBA 1450 rpm 58 °C 43 °C
Deepcool Gammaxx 400 15 °C 44 dBA 1500 rpm 60 °C 45 °C
Cooler Master TPC 812 23 °C 51 dBA 2350 rpm 66 °C 43 °C
Deepcool Gammaxx 300 18 °C 43 dBA 1650 rpm 74 °C 56 °C
Intel stock cooler 18 °C 41 dBA 2000 rpm 97 °C 79 °C
Xigmatek Praeton 19 °C 52 dBA 2900 rpm 83 °C 64 °C
Noctua NH-U12P SE2 18 °C 42 dBA 1300 rpm 69 °C 51 °C
Deepcool Frostwin 24 °C 46 dBA 1650 rpm 78 °C 54 °C
Thermaltake Frio Advanced 13 °C 56 dBA 2000 rpm 62 °C 49 °C
Xigmatek Dark Knight Night Hawk Edition 9 °C 48 dBA 2100 rpm 53 °C 44 °C
Thermaltake Frio Extreme 21 °C 53 dBA 1750 rpm 59 °C 38 °C
Noctua NH-U9B SE2 12 °C 44 dBA 1700 rpm 64 °C 52 °C
Thermaltake WATER2.0 Pro 15 °C 54 dBA 2000 rpm 52 °C 37 °C
Deepcool Fiend Shark 18 °C 45 dBA 1500 rpm 74 °C 56 °C
Arctic Freezer i30 13 °C 42 dBA 1350 rpm 63 °C 50 °C
Spire TME III 8 °C 46 dBA 1700 rpm 70 °C 62 °C
Thermaltake WATER2.0 Performer 11 °C 54 dBA 2000 rpm 49 °C 38 °C
Arctic Alpine 11 PLUS 11 °C 45 dBA 2000 rpm 82 °C 71 °C
be quiet! Dark Rock 2 10 °C 41 dBA 1300 rpm 58 °C 48 °C
Phanteks PH-TC14CS 16 °C 47 dBA 1300 rpm 58 °C 42 °C
Phanteks PH-TC14PE 16 °C 48 dBA 1300 rpm 57 °C 41 °C
SilverStone HE01 (Q) 19 °C 44 dBA 1150 rpm 63 °C 44 °C
SilverStone HE01 (P) 20 °C 57 dBA 2050 rpm 62 °C 42 °C
Thermaltake WATER2.0 Extreme (S) 17 °C 44 dBA 1250 rpm 52 °C 35 °C
Thermaltake WATER2.0 Extreme (E) 17 °C 53 dBA 1900 rpm 50 °C 33 °C
Deepcool Neptwin 11 °C 46 dBA 1500 rpm 56 °C 45 °C
SilverStone HE02 19 °C 49 dBA 2000 rpm 64 °C 45 °C
Zalman CNPS9900DF 23 °C 45 dBA 1400 rpm 68 °C 45 °C
Deepcool ICE BLADE PRO V2.0 22 °C 43 dBA 1500 rpm 67 °C 45 °C
Phanteks PH-TC90LS 24 °C 47 dBA 2600 rpm 95 °C 71 °C
Rosewill AIOLOS 20 °C 40 dBA 1600 rpm 94 °C 74 °C
Corsair H60 20 °C 49 dBA 2000 rpm 64 °C 44 °C
Zalman LQ310 27 °C 51 dBA 2050 rpm 65 °C 38 °C
Noctua NH-L9i 24 °C 44 dBA 2500 rpm 95 °C 71 °C
NZXT Respire T40 20 °C 45 dBA 1850 rpm 76 °C 56 °C
NZXT Respire T20 21 °C 45 dBA 1900 rpm 77 °C 56 °C
Zalman LQ315 20 °C 52 dBA 1950 rpm 57 °C 37 °C
Corsair H80i (Quiet) 19 °C 44 dBA 1100 rpm 61 °C 42 °C
Corsair H80i (Maximum) 19 °C 57 dBA 2500 rpm 55 °C 36 °C
NZXT Kraken X40 (Silent) 25 °C 44 dBA 1050 rpm 66 °C 41 °C
NZXT Kraken X40 (Extreme) 25 °C 53 dBA 1650 rpm 62 °C 37 °C
Zalman LQ320 20 °C 52 dBA 2100 rpm 57 °C 37 °C
Corsair H100i (Quiet) 22 °C 45 dBA 1150 rpm 58 °C 36 °C
Corsair H100i (Maximum) 22 °C 61 dBA 2500 rpm 54 °C 32 °C
NZXT Kraken X60 (Silent) 26 °C 46 dBA 1000 rpm 62 °C 36 °C
NZXT Kraken X60 (Extreme) 26 °C 60 dBA 1650 rpm 60 °C 34 °C
Prolimatech Genesis Black Series 25 °C 46 dBA 1150 rpm 69 °C 44 °C
Phanteks PH-TC12DX 25 °C 51 dBA 1850 rpm 74 °C 49 °C
Corsair H90 23 °C 51 dBA 1550 rpm 61 °C 38 °C
Corsair H110 27 °C 58 dBA 1500 rpm 60 °C 33 °C
Evercool Venti 23 °C 49 dBA 2250 rpm 72 °C 49 °C
Thermalright Archon SB-E X2 22 °C 45 dBA 1400 rpm 68 °C 46 °C
Scythe Kabuto II 20 °C 41 dBA 1450 rpm 67 °C 47 °C
Prolimatech Megahalems Red Series 20 °C 51 dBA 1500 rpm 63 °C 43 °C
Zalman FX100 (fanless) 18 °C NA NA 98 °C 80 °C
Zalman FX100 (92 mm fan) 18 °C 50 dBA 2850 rpm 69 °C 51 °C
Gelid The Black Edition 21 °C 45 dBA 1650 rpm 66 °C 45 °C
Thermalright AXP-100 22 °C 42 dBA 2400 rpm 76 °C 54 °C
SilverStone NT06-PRO 19 °C 50 dBA 2400 rpm 72 °C 53 °C
SilverStone AR01 11 °C 46 dBA 2150 rpm 53 °C 42 °C
Cooler Master Seidon 120M 16 °C 52 dBA 2300 rpm 58 °C 42 °C
Enermax ETS-T40-White Cluster 16 °C 50 dBA 2200 rpm 63 °C 47 °C
Cooler Master Seidon 120XL 17 °C 54 dBA 2250 rpm 55 °C 38 °C

In the graph below, you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.

Cooler Master Seidon 120XL 

In the graph below, you can see how many decibels of noise each cooler makes.

 Cooler Master Seidon 120XL

Main Specifications

The main specifications for the Cooler Master Seidon 120XL CPU cooler include:

* Researched at Newegg.com on the day we published this review.

Conclusions

The Cooler Master Seidon 120XL is a mainstream liquid cooling system, easy to install, and fits virtually any case. In our tests, it performed very well, being on par with some of the best 120 mm radiator liquid coolers.

It performed much better that its “little brother”, the Seidon 120M. And oddly, it can be found with the same price tag.

The strong point of the Seidon 120XL is its excellent cost/benefit ratio. For this reason we are giving it our Golden Award.

Originally at http://www.hardwaresecrets.com/article/Cooler-Master-Seidon-120XL-CPU-Cooler-Review/1785


© 2004-14, Hardware Secrets, LLC. All Rights Reserved.

Total or partial reproduction of the contents of this site, as well as that of the texts available for downloading, be this in the electronic media, in print, or any other form of distribution, is expressly forbidden. Those who do not comply with these copyright laws will be indicted and punished according to the International Copyrights Law.

We do not take responsibility for material damage of any kind caused by the use of information contained in Hardware Secrets.