Cooler Master Hyper 612 PWM CPU Cooler Review
By Rafael Otto Coelho
on October 11, 2011
The Cooler Master Hyper 612 PWM is a huge CPU cooler with a tower heatsink and six heatpipes. It comes with one 120 mm fan, but supports up to two fans.
The Hyper 612 PWM big box is shown in Figure 1.
click to enlarge
Figure 1: Package
The box contents are shown in Figure 2: the cooler itself, manuals, thermal compound, and installation hardware. One fan came preinstalled, but it comes with the hardware necessary to install a second 120 mm fan.
click to enlarge
Figure 2: Accessories
Figure 3 shows the Cooler Master Hyper 612 PWM.
click to enlarge
Figure 3: The Hyper 612 PWM
This cooler is discussed in detail in the following pages.
Figure 3 shows the cooler from the front. Here you can see the semitransparent front fan.
click to enlarge
Figure 4: Front view
In Figure 5, you see the side of the heatsink, which is very large. Notice that only a very small part of the heatsink side is closed.
click to enlarge
Figure 5: Side view
Figure 6 reveals the rear of the heatsink. Here, you can install a second fan, using the included frames.
click to enlarge
Figure 6: Rear view
On the top of the cooler, there is a black aluminum part with the Cooler Master logo that allows you to see the tips of the well-spaced heatpipes.
click to enlarge
Figure 7: Top view
Figure 8 reveals the six heatpipes near the base of the cooler. There is an auxiliary heatsink over the base.
click to enlarge
Figure 8: Heatpipes
The base of the cooler, which is a solid copper block, is shown in Figure 9. This base is smooth but does not have a mirror-like aspect.
click to enlarge
Figure 9: Base
The fan is easy to remove, thanks to the plastic frames to which it is attached. Figure 10 shows the heatsink after removing the fan.
click to enlarge
Figure 10: Heatsink
In Figure 11, you can see the fan that comes with the Hyper 612 PWM. As the name of the product suggests, the fan is a PWM model, thus having four pins in the connector. There are four rubber pads which help absorb vibrations.
click to enlarge
Figure 11: Fan
In order to install the Hyper 612 PWM on our Intel CPU, the first step was to attach the clips shown in Figure 12 to the base of the cooler.
click to enlarge
Figure 12: Clips installed
After that, all you need to do is put the cooler over the CPU, place the backplate on the solder side of the motherboard, and then screw four nuts, shown in Figure 13, to secure the cooler in place.
click to enlarge
Figure 13: Backplate
Figure 14 reveals the cooler installed in our system.
click to enlarge
Figure 14: Installed
We tested the cooler with a Core i7-860 CPU (quad-core, 2.8 GHz), which is a socket LGA1156 processor with a 95 W TDP (Thermal Design Power). In order to get higher thermal dissipation, we overclocked it to 3.3 GHz (150 MHz base clock and 22x multiplier), keeping the standard core voltage (Vcore), which was the maximum stable overclock we could make with the stock cooler. Keep in mind that we could have raised the CPU clock more, but to include the stock cooler in our comparison, we needed to use this moderate overclock.
We measured noise and temperature with the CPU idle and under full load. In order to get 100% CPU usage in all threads, we ran Prime 95 25.11 with the "In-place Large FFTs" option. (In this version, the software uses all available threads.)
We compared the tested cooler to the Intel stock cooler with a copper base (included with the CPU), as well as with other coolers. Note that in the past, we tested coolers with a socket LGA775 CPU, and we retested some "old" coolers with this new methodology. This means you can find different values in older reviews than the values you will read in the next page. Every cooler was tested with the thermal compound that accompanies it.
Room temperature measurements were taken with a digital thermometer. The core temperature was read with the SpeedFan program (available from the CPU thermal sensors), using an arithmetic average of the core temperature readings. During the tests, the left panel of the case was open.
Hardware Configuration
Operating System Configuration
Software Used
Error Margin
We adopted a 2 °C error margin, meaning temperature differences below 2 °C are considered irrelevant.
The table below presents the results of our measurements. We repeated the same test on all coolers listed below. Each measurement was taken with the CPU at idle and at full load. In the models with a fan supporting PWM, the motherboard controlled the fan speed according to core load and temperature. On coolers with an integrated fan controller, the fan was set at the minimum speed on the idle test and at full speed on the full load test.
Idle Processor | Processor at Full Load | ||||||
Cooler | Room Temp. | Noise | Speed | Core Temp. | Noise | Speed | Core Temp. |
Intel stock (socket LGA1156) | 14 °C | 44 dBA | 1700 rpm | 46 °C | 54 dBA | 2500 rpm | 90 °C |
Cooler Master Hyper TX3 G1 | 14 °C | 47 dBA | 2050 rpm | 33 °C | 56 dBA | 2900 rpm | 62 °C |
Zalman CNPS10X Extreme | 14 °C | 45 dBA | 1400 rpm | 27 °C | 53 dBA | 1950 rpm | 51 °C |
Thermaltake Silent 1156 | 14 °C | 44 dBA | 1200 rpm | 38 °C | 49 dBA | 1750 rpm | 69 °C |
Noctua NH-D14 | 14 °C | 49 dBA | 1250 rpm | 27 °C | 49 dBA | 1250 rpm | 53 °C |
Zalman CNPS10X Performa | 14 °C | 46 dBA | 1500 rpm | 28 °C | 52 dBA | 1950 rpm | 54 °C |
Prolimatech Megahalems | 14 °C | 40 dBA | 750 rpm | 27 °C | 60 dBA | 2550 rpm | 50 °C |
Thermaltake Frio | 14 °C | 46 dBA | 1450 rpm | 27 °C | 60 dBA | 2500 rpm | 50 °C |
Prolimatech Samuel 17 | 14 °C | 40 dBA | 750 rpm | 40 °C | 60 dBA | 2550 rpm | 63 °C |
Zalman CNPS8000A | 18 °C | 43 dBA | 1400 rpm | 39 °C | 54 dBA | 2500 rpm | 70 °C |
Spire TherMax Eclipse II | 14 °C | 55 dBA | 2200 rpm | 28 °C | 55 dBA | 2200 rpm | 53 °C |
Scythe Ninja3 | 17 °C | 39 dBA | 700 rpm | 32 °C | 55 dBA | 1800 rpm | 57 °C |
Corsair A50 | 18 °C | 52 dBA | 1900 rpm | 33 °C | 52 dBA | 1900 rpm | 60 °C |
Thermaltake Jing | 18 °C | 44 dBA | 850 rpm | 34 °C | 49 dBA | 1300 rpm | 60 °C |
GlacialTech Alaska | 18 °C | 43 dBA | 1150 rpm | 36 °C | 51 dBA | 1600 rpm | 60 °C |
Deepcool Gamer Storm | 18 °C | 43 dBA | 1100 rpm | 35 °C | 48 dBA | 1600 rpm | 62 °C |
Corsair A70 | 26 °C | 56 dBA | 1900 rpm | 40 °C | 56 dBA | 1900 rpm | 65 °C |
Deepcool Ice Blade Pro | 23 °C | 45 dBA | 1200 rpm | 38 °C | 52 dBA | 1500 rpm | 64 °C |
AC Freezer 7 Pro Rev. 2 | 23 °C | 47 dBA | 1750 rpm | 44 °C | 51 dBA | 2100 rpm | 77 °C |
Corsair H70 | 27 °C | 60 dBA | 1900 rpm | 37 °C | 60 dBA | 1900 rpm | 61 °C |
Zalman CNPS9900 Max | 27 °C | 55 dBA | 1600 rpm | 38 °C | 58 dBA | 1750 rpm | 63 °C |
Arctic Cooling Freezer 11 LP | 25 °C | 45 dBA | 1700 rpm | 51 °C | 49 dBA | 1950 rpm | 91 °C |
CoolIT Vantage | 26 °C | 60 dBA | 2500 rpm | 37 °C | 60 dBA | 2500 rpm | 62 °C |
Deepcool Ice Matrix 600 | 25 °C | 46 dBA | 1100 rpm | 41 °C | 53 dBA | 1300 rpm | 69 °C |
Titan Hati | 26 °C | 46 dBA | 1500 rpm | 40 °C | 57 dBA | 2450 rpm | 68 °C |
Arctic Cooling Freezer 13 | 27 °C | 49 dBA | 1950 rpm | 41 °C | 53 dBA | 2300 rpm | 70 °C |
Noctua NH-C14 | 26 °C | 52 dBA | 1300 rpm | 37 °C | 52 dBA | 1300 rpm | 61 °C |
Intel XTS100H | 26 °C | 49 dBA | 1200 rpm | 42 °C | 64 dBA | 2600 rpm | 68 °C |
Zalman CNPS5X SZ | 23 °C | 52 dBA | 2250 rpm | 38 °C | 57 dBA | 2950 rpm | 69 °C |
Thermaltake SlimX3 | 21 °C | 50 dBA | 2700 rpm | 46 °C | 50 dBA | 2750 rpm | 99 °C |
Cooler Master Hyper 101 | 21 °C | 50 dBA | 2600 rpm | 38 °C | 57 dBA | 3300 rpm | 71 °C |
Antec Kühler H_{2}O 620 | 19 °C | 52 dBA | 1400 rpm | 34 °C | 55 dBA | 1400 rpm | 58 °C |
Arctic Cooling Freezer 13 Pro | 20 °C | 46 dBA | 1100 rpm | 36 °C | 49 dBA | 1300 rpm | 62 °C |
GlacialTech Siberia | 22 °C | 49 dBA | 1400 rpm | 34 °C | 49 dBA | 1400 rpm | 61 °C |
Evercool Transformer 3 | 18 °C | 46 dBA | 1800 rpm | 33 °C | 51 dBA | 2250 rpm | 65 °C |
Zalman CNPS11X Extreme | 20 °C | 51 dBA | 1850 rpm | 34 °C | 56 dBA | 2050 rpm | 61 °C |
Thermaltake Frio OCK | 15 °C | 44 dBA | 1000 rpm | 27 °C | 64 dBA | 2200 rpm | 51 °C |
Prolimatech Genesis | 18 °C | 49 dBA | 1050 rpm | 30 °C | 49 dBA | 1050 rpm | 54 °C |
Arctic Cooling Freezer XTREME Rev. 2 | 15 °C | 41 dBA | 1050 rpm | 32 °C | 44 dBA | 1400 rpm | 60 °C |
NZXT HAVIK 140 | 16 °C | 48 dBA | 1250 rpm | 29 °C | 49 dBA | 1250 rpm | 55 °C |
Antec Kühler H_{2}O 920 | 18 °C | 41 dBA | 650 rpm | 29 °C | 64 dBA | 2500 rpm | 49 °C |
Zalman CNP7X LED | 18 °C | 45 dBA | 1950 rpm | 33 °C | 48 dBA | 2150 rpm | 58 °C |
EVGA Superclock | 14 °C | 43 dBA | 1300 rpm | 27 °C | 58 dBA | 2350 rpm | 47 °C |
Evercool Transformer 4 | 15 °C | 46 dBA | 1500 rpm | 26 °C | 53 dBA | 1950 rpm | 52 °C |
Xigmatek Dark Knight | 18 °C | 47 dBA | 1700 rpm | 30 °C | 53 dBA | 2150 rpm | 57 °C |
Xigmatek Aegir | 15 °C | 44 dBA | 1500 rpm | 27 °C | 50 dBA | 1950 rpm | 52 °C |
Cooler Master GeminII S524 | 16 °C | 45 dBA | 1300 rpm | 29 °C | 53 dBA | 1800 rpm | 58 °C |
Enermax ETS-T40-TA | 16 °C | 40 dBA | 1050 rpm | 28 °C | 48 dBA | 1800 rpm | 55 °C |
Corsair H80 | 14 °C | 42 dBA | 2150 rpm | 25 °C | 52 dBA | 2150 rpm | 47 °C |
Akasa Venom Voodoo | 13 °C | 40 dBA | 1000 rpm | 26 °C | 48 dBA | 1500 rpm | 51 °C |
Xigmatek Thor's Hammer | 15 °C | 44 dBA | 1500 rpm | 30 °C | 50 dBA | 2000 rpm | 55 °C |
Cooler Master Hyper 612 PWM | 19 °C | 45 dBA | 1400 rpm | 30 °C | 52 dBA | 1900 rpm | 54 °C |
In the graph below, at full load you can see how many degrees Celsius hotter the CPU core is than the air outside the case. The lower this difference, the better is the performance of the cooler.
The main specifications for the Cooler Master Hyper 612 PWM CPU cooler include:
The Cooler Master Hyper 612 PWM looks like a great cooler and, this time, appearances were not deceptive. It is a great cooler indeed, with a terrific performance and a good noise level.
We couldn’t find any issues in this cooler except for its huge size, which can be a problem with narrow cases (it is 163 mm tall) or with memory modules with tall heatsinks (more than 42 mm). However, it is a problem shared by most high-end air coolers.
By its excellent performance, we are giving the Cooler Master Hyper 612 PWM the Hardware Secrets Golden Award.
Originally at http://www.hardwaresecrets.com/article/Cooler-Master-Hyper-612-PWM-CPU-Cooler-Review/1398