Notice: Undefined index: article332 in /www/hardwaresecrets/article.php on line 5 Thermaltake Purepower 430W NP Power Supply Review | Hardware Secrets
Hardware Secrets
Home | Camera | Case | CE | Cooling | CPU | Input | Memory | Mobile | Motherboard | Networking | Power | Storage | Video | Other
Content
Articles
Editorial
First Look
Gabriel’s Blog
News
Reviews
Tutorials
Main Menu
About Us
Awarded Products
Datasheets
Dictionary
Download
Drivers
Facebook
Links
Manufacturer Finder
Newsletter
RSS Feed
Test Your Skills
Twitter
Newsletter
Subscribe today!
Recommended
Switching Power Supplies A - Z, Second Edition
Switching Power Supplies A - Z, Second Edition, by Sanjaya Maniktala (Newnes), starting at $55.92


Home » Power
Thermaltake Purepower 430W NP Power Supply Review
Author: Gabriel Torres 229,403 views
Type: Reviews Last Updated: March 14, 2008
Page: 7 of 9
Load Tests

We conducted several tests with this power supply, as described in the article Hardware Secrets Power Supply Test Methodology. All the tests described below were taken with a room temperature between 46° C and 48° C. During our tests the power supply temperature was between 51° C and 54° C.

First we tested this power supply with five different load patterns, trying to pull around 20%, 40%, 60%, 80%, and 100% of its labeled maximum capacity (actual percentage used listed under “% Max Load”), watching how the reviewed unit behaved under each load. In the table below we list the load patterns we used and the results for each load.

Since this power supply has only one +12V rail this time we connected all connectors from the power supply together on the +12V1 input from our load tester.

If you add all the power listed for each test, you may find a different value than what is posted under “Total” below. Since each output can vary slightly (e.g., the +5 V output working at +5.10 V), the actual total amount of power being delivered is slightly different than the calculated value. On the “Total” row we are using the real amount of power being delivered, as measured by our load tester.

Input

Test 1

Test 2

Test 3

Test 4

Test 5

+12V1

5 A (60 W)

8 A (96 W)

14 A (168 W)

16 A (192 W)

18 A (216 W)

+5V

2 A (10 W)

8 A (40 W)

10 A (50 W)

18 A (90 W)

24 A (120 W)

+3.3 V

2 A (6.6 W)

8 A (26.4 W)

10 A (33 W)

16 A (52.8 W)

23 A (75.9 W)

+5VSB

1 A (5 W)

1 A (5 W)

1 A (5 W)

1.5 A (7.5 W)

2 A (10 W)

-12 V

0.5 A (6 W)

0.5 A (6 W)

0.5 A (6 W)

0.5 A (6 W)

0.8 A (9.6 W)

Total

87.8 W

174.6 W

262.9 W

348.8 W

431.5 W

% Max Load

20.4%

40.6%

61.1%

81.1%

100.3%

Result

Pass

Pass

Pass

Pass

Fail

Voltage Stability

Pass

Pass

Pass

Pass

Fail

Ripple and Noise

Pass

Pass

Pass

Pass

Fail

AC Power

115 W

227 W

350 W

498 W

Fail

Efficiency

76.3%

76.9%

75.1%

70.0%

Fail

When we tried running test number 5, the power supply wouldn’t turn on, showing us that its over power protection (OPP) was in action and configured at a value that was lower than the power supply maximum capacity.

So we tried to change the configuration we had set for test number five to try to see how much power we could really pull from this unit. Starting from test number four, the maximum we could do was to increase one amp at +3.3 V from 16 A to 17 A, making the power supply to deliver only around 355 W (under this configuration it was pulling 510 W from the wall, so efficiency was 69.6%). Any other configuration we tried above that the power supply would work outside its specs, especially noise.

At test number four noise level for +12 V was 83.4 mV, for +5 V was 35 mV and for +3.3 V was 25.6 mV. By just increasing one amp at +3.3 V as we explained, noise level at +12 V jumped to 117 mV, at +5 V jumped to 50 mV and at +3.3 V stayed at 31.6 mV. As you can see these number are already touching the noise maximum level (120 mV for +12 V and 50 mV for +5 V and +3.3 V).

When we tried increasing one amp at +12 V noise jumped to 190 mV and skyrocket to 680 mV when we tried pulling 18 A from it – and, remember, according to the power supply label +12 V could deliver 18 A.

The conclusion is that according to our methodology Thermaltake Purepower 430 W NP isn’t a 430 W power supply, but a 350 W model! We also could only pull 16 A from its +12 V output, while the label says the limit is 18 A.

On the other hand, this power supply has its over power protection (OPP) circuit in action, which prevented this power supply from burning when we pulled more power that it could handle – what didn’t happen with Huntkey Green Star 450 W, which is also a power supply labeled at 450 W that can only deliver 360 W.

Below you can see noise level when we were pulling 355 W from this power supply.

Thermaltake Purepower 430 W NP
click to enlarge
Figure 15: Noise level at +12 V with power supply delivering 355 W.

Thermaltake Purepower 430 W NP
click to enlarge
Figure 16: Noise level at +5 V with power supply delivering 355 W.

Thermaltake Purepower 430 W NP
click to enlarge
Figure 17: Noise level at +3.3 V with power supply delivering 355 W.

Voltage regulation during our tests one through four was excellent, with all outputs within 3% of their nominal voltages – ATX specification defines that all outputs must be within 5% of their nominal voltages (except on -12 V where the limit is 10%).

This power supply provided efficiency below 80%, reaching 70% when we pulled the maximum about of power it could deliver – 350 W. Definitely there are better products around. Kingwin ABT-450MM, for example, is a competing cheap low-end power supply that could maintain an efficiency above 80% when pulling 40% and 60% of its load (i.e., between 180 W and 270 W).

Short-circuit protection was tested and was working just fine.

This power supply fans run very slowly when the power supply is cold and they started spinning faster as soon as the power supply reached 28° C, with an obvious increase on the noise generated, but not to the point we would categorize as disturbing.

Print Version | Send to Friend | Bookmark Article « Previous |  Page 7 of 9  | Next »

Related Content
  • Antec NeoPower 550 Power Supply Review
  • Zalman ZM600-HP 600 W Power Supply Review
  • Young Year YP-AB Transparent Power Supply
  • GlacialPower GP-PS550BP Power Supply
  • Thermaltake Toughpower 1500 W Power Supply

  • RSSLatest Content
    AMD A4-5000 CPU Review
    November 26, 2014 - 3:10 AM
    Samsung Galaxy Note Pro 12.2 Tablet Review
    November 25, 2014 - 3:00 AM
    ASUS X99-PRO Motherboard
    November 5, 2014 - 3:00 AM
    ASRock QC5000-ITX Motherboard
    November 4, 2014 - 3:00 AM
    Gigabyte X99-UD3 Motherboard
    October 30, 2014 - 8:30 AM
    ASUS X99-A Motherboard
    October 29, 2014 - 3:00 AM
    ASUS ZenFone 5 Smartphone Review
    October 15, 2014 - 7:00 PM
    ASUS AM1M-A Motherboard
    October 15, 2014 - 4:30 AM
    ASRock X99 Extreme4 Motherboard
    October 14, 2014 - 4:10 AM







    2004-14, Hardware Secrets, LLC. All rights reserved.
    Advertising | Legal Information | Privacy Policy
    All times are Pacific Standard Time (PST, GMT -08:00)