Hardware Secrets
Home | Camera | Case | CE | Cooling | CPU | Input | Memory | Mobile | Motherboard | Networking | Power | Storage | Video | Other
Content
Articles
Editorial
First Look
Gabriel’s Blog
News
Reviews
Tutorials
Main Menu
About Us
Awarded Products
Datasheets
Dictionary
Download
Drivers
Facebook
Links
Manufacturer Finder
Newsletter
RSS Feed
Test Your Skills
Twitter
Newsletter
Subscribe today!
Search
Recommended
Build Your Own PC Do-It-Yourself For Dummies
Build Your Own PC Do-It-Yourself For Dummies, by Mark L. Chambers (For Dummies), starting at $6.30


Home » Video
Introducing the Panel Self Refresh Technology
Author: Gabriel Torres 21,204 views
Type: Tutorials Last Updated: September 15, 2011
Page: 1 of 2
Introduction

Manufacturers are always looking for innovative ways to save battery life on laptops. With the embedded DisplayPort 1.3 interface (eDP 1.3), VESA, the Video Standards Association behind DisplayPort, came up with a new idea, the Panel Self Refresh (PSR). Let’s see how it works.

The video processor needs to keep sending video signals to the video monitor at a constant rate. This rate, known as refresh rate or vertical frequency, is at least 60 Hz, meaning that the video processor has to send to the video display the contents of the screen at least 60 times per second, even when there is no change in the image.

The idea behind the Panel Self Refresh is to shut down the video processor and associated circuitry when the image is static – for example, when you are reading a PDF file. The display would have a video memory (a.k.a. frame buffer) to store the contents of the last screen update, the computer would shut down all video circuitry, and the display would keep repeating the contents of the last update until there is an update to the screen contents (e.g., you scrolled the document you were reading).

When the Panel Self Refresh is used, the display engine inside the CPU can be turned off, making the laptop save around 50% power. The DisplayPort interface, which is used in the communication between the computer and the LCD panel, can also be turned off, providing an additional 25% power savings. There is also some power savings on the RAM memory, because on systems with integrated graphics engines, as is usually the case with laptops, part of the RAM memory is used as a video memory (a.k.a. frame buffer). While the Panel Self Refresh is used, the RAM doesn’t need to be accessed by the video engine, providing an additional 10% power savings. When all the numbers are added, the Panel Self Refresh technology can result in the laptop saving up to 85% power while it is being used.

Please understand that this doesn’t mean that battery life will last 85% longer. This saving only occurs when the computer is idle and the display isn’t refreshed. When the display needs to be refreshed (e.g., you are watching a video), this technology isn’t used, and your laptop will have the same power consumption as before. This should translate in an increase of 45 minutes to one hour of battery life.

Also, because now the display has to have a piece of RAM to store the contents of the image to be displayed, the panel itself actually consumes a little bit more power when this technology is in use, but this increase in power consumption is offset by the overall power savings of the system. When the technology is not in use, the display turns off the RAM chip to save energy. By the way, manufacturers won’t use a RAM chip for this function; this functionality will be embedded inside the timing controller (TCON) chip, which is in charge of decoding the DisplayPort signal and sending the decoded signal to the rest of the circuitry inside the display.

Let’s see in a little bit more detail how the Panel Self Refresh works.
Print Version | Send to Friend | Bookmark Article Page 1 of 2  | Next »

Related Content
  • The Truth About NiCd Batteries
  • Inside Atom Architecture
  • All Atom Models
  • PC TrickleSaver Review
  • ASUS VivoBook X202E Laptop

  • RSSLatest Content
    ASUS ZenFone 5 Smartphone Review
    October 15, 2014 - 7:00 PM
    ASUS AM1M-A Motherboard
    October 15, 2014 - 4:30 AM
    ASRock X99 Extreme4 Motherboard
    October 14, 2014 - 4:10 AM
    Cooler Master Elite 130 Case Review
    October 9, 2014 - 2:46 AM
    ASUS RAMPAGE V EXTREME Motherboard
    October 7, 2014 - 2:50 AM
    ASRock Fatal1ty X99M Killer Motherboard
    October 6, 2014 - 5:40 AM
    ASUS X99-DELUXE Motherboard
    September 30, 2014 - 1:07 AM
    MSI GT70 2PE Dominator Pro Laptop Review
    September 25, 2014 - 1:15 AM
    Sony Xperia T3 Smartphone Review
    September 22, 2014 - 1:50 AM







    2004-14, Hardware Secrets, LLC. All rights reserved.
    Advertising | Legal Information | Privacy Policy
    All times are Pacific Standard Time (PST, GMT -08:00)