Hardware Secrets
Home | Camera | Case | CE | Cooling | CPU | Input | Memory | Mobile | Motherboard | Networking | Power | Storage | Video | Other
First Look
Gabriel’s Blog
Main Menu
About Us
Awarded Products
Manufacturer Finder
RSS Feed
Test Your Skills
Subscribe today!
Build Your Own PC Do-It-Yourself For Dummies
Build Your Own PC Do-It-Yourself For Dummies, by Mark L. Chambers (For Dummies), starting at $8.01
Home » Cooling
Cooler Master V10 CPU Cooler Review
Author: Rafael Coelho 74,108 views
Type: Reviews Last Updated: July 31, 2009
Page: 2 of 7
Introduction (Cont’d)
Hardware Secrets Golden Award

Removing the huge plastic cover that envolves the whole cooler we can have a better idea of how it really is. There are three heatsinks with aluminum fins connected to the base by copper heatpipes, two of them in vertical position and the other one in the horizontal. They are cooled by two 120 mm fans. After V10 is installed this horizontal heatsink is positioned over the memory modules area, helping cooling the memories.

Cooler Master V10
click to enlarge
Figure 6: Cooler without its plastic cover.

These 120 mm fans are all connected to the same wires and have their rotation controlled by the motherboard, using a mini four-pin connector with PWN signal. They are made of translucid black plastic with red LEDs, with a nominal rotation varying between 800 rpm and 2400 rpm.

Cooler Master V10
click to enlarge
Figure 7: Fans.

In Figure 8, you can see the heaksink set without the fans. An interesting detail is the fact the fans are not fixed to the heatsink, being screwed to the cover instead. However there is no vibration absorbing mechanism.

Cooler Master V10
click to enlarge
Figure 8: Heatsink.

The heatsink that stays over the memory modules is connected to cooler base by four heatpipes. The vertical heatsink near it, however, uses only two heatpipes.

Cooler Master V10
click to enlarge
Figure 9: Heatpipes detail.

Besides its size, the presence of two fans and three heatpipes, the true differential of this cooler is the presence of one TEC (Thermo-Eletric Cooler) device, also known as Peltier cooler, because it works based on Peltier effect, were a semiconductor device works as a thermodinamic machine, "pumping" heat from a cold source to a hot source. So this cooler does not work just as a heat radiator like regular coolers; it works as a small refrigerator.

This device, however, has some disadvantages: the first one is the cost, which reflects on the high price from V10. The second one is the fact that a Peltier cooler demands energy to work, and it is not irrisory: this cooler "steals" up to 70 W from your power supply. The third one is the fact that, when it is at full operation and the cold side reaches low temperatures, it can cause air moisture condensation, creating water drops just like a cold water glass "creates" water on the outside.

But Cooler Master has managed to solve this last two problems in an amazing way: a controller circuit, which regulates the power delivered to the TEC device according to the temperate on the cooler base. If this base is below 20 °C, the plate is simply turned off. Above this the controller increases voltage according to the temperature, up to 12 V at 70 °C, when the cooler pulls 70 W. This controller is inside the little black box you see on the opposite side from the cooler base in Figure 10. The TEC cooler itself is located on the side of the base, with its cold side connected to the base through four heatpipes, while its hot side is connected to a heatsink using two U-shaped heatpipes. So, this third heatsink is not in charge of cooling down the CPU but the TEC cooler.

Cooler Master V10
click to enlarge
Figure 10: TEC and its controller.

Print Version | Send to Friend | Bookmark Article « Previous |  Page 2 of 7  | Next »

Related Content
  • Thermaltake BigTyp 14Pro CPU Cooler Review
  • Akasa Nero CPU Cooler Review
  • Zalman CNPS10X Extreme CPU Cooler Review
  • Cooler Master Vortex 752 CPU Cooler Review
  • Cooler Master Hyper 212 Plus CPU Cooler Review

  • RSSLatest Content
    ASRock FM2A88X-ITX+ Motherboard
    April 27, 2015 - 2:40 AM
    GeForce GTX TITAN X Video Card Review
    April 22, 2015 - 4:00 AM
    A10-7800 CPU Review
    April 6, 2015 - 2:50 AM
    Samsung Galaxy A5 Smartphone Review
    March 31, 2015 - 2:47 AM
    A10-6800K vs. Core i3-4150 CPU Review
    March 25, 2015 - 3:15 AM

    2004-15 Clube do Hardware, all rights reserved.
    Advertising | Legal Information | Privacy Policy
    All times are Pacific Standard Time (PST, GMT -08:00)