Hardware Secrets
Home | Camera | Case | CE | Cooling | CPU | Input | Memory | Mobile | Motherboard | Networking | Power | Storage | Video | Other
Content
Articles
Editorial
First Look
Gabriel’s Blog
News
Reviews
Tutorials
Main Menu
About Us
Awarded Products
Datasheets
Dictionary
Download
Drivers
Facebook
Links
Manufacturer Finder
Newsletter
RSS Feed
Test Your Skills
Twitter
Newsletter
Subscribe today!
Recommended
Build Your Own PC Do-It-Yourself For Dummies
Build Your Own PC Do-It-Yourself For Dummies, by Mark L. Chambers (For Dummies), starting at $6.46


Home » Video
Seeking The Best Performance per Watt for Folding@Home
Author: Gabriel Torres 61,289 views
Type: Reviews Last Updated: October 29, 2008
Page: 4 of 7
Performance Analysis

Now we want to see what we were getting in terms of score on Folding@Home by running these systems and do some preliminary analysis to see the most efficient configurations we had running. WU stands for work unit. Project is the number of the Folding@Home project each client was running at the time we collected our data, which will tell us how many points they will give us for each delivered work unit (click here to see the full table). We put the number of points given for each completed WU in parenthesis. The maximum daily performance is calculated by dividing 86,400 (number of seconds in a day) by the time to complete one work unit and the result multiplied by the points given to each completed work unit for that project.

Our metric for measuring efficiency will be points/kWh, which is calculated by dividing the maximum monthly performance by the monthly consumption in kWh. This index indicates how many points each system produces with each kWh consumed from the wall. So the higher this number, the better.

System #

Client

Project (Points)

Time to Complete One WU (seconds)

Max. Daily Performance (Points)

Max. Monthly Performance (Points)

Points/kWh

1

SMP

5101 (2,165)

66,000

2,834

85,020

976

2

SMP

2665 (1,920)

150,000

1,106

33,180

249

2

GPU

5800 (480)

5,800

7,150

214,500

1,307

2

GPU + SMP

Above

150,000 (CPU), 8,700 (GPU)

5,873

176,190

1,211

3

SMP

2653 (1760)

84,100

1,808

54,240

384

3

GPU

5014 (480)

10,300

4,026

120,780

981

3

GPU + SMP

Above

84,100 (CPU), 15,400 (GPU)

4,501

135,030

880

4

GPU

5651 (388)

14,300 (HD 4850), 14,000 (HD 4870)

2344 + 2394 = 4,738

142,140

459

5

SMP

2665 (1,920)

79,500

2,087

62,610

260

5

GPU

5013 (480)

8,200 (GTX 280), 8,100 (8800 GT), 8,500 (8800 GT)

5,057 + 5,120 + 4,879 = 15,056

451,680

1,422

5

GPU + SMP

Above

79,500 (CPU), 8,200 (GTX 280), 8,100 (8800 GT), 8,500 (8800 GT)

17,143

514,290

1,526

6

PS3

5310 (110)

26,100

364

10,920

116

You should understand something very important about Folding@Home scoring system. While work units assigned to NVIDIA-based video cards will almost always give you 480 points, the number of points given by work units processed by ATI-video cards and the Playstation 3 console can change quite often. The above results are based on the project that each client was running at the time we made our tests and do not reflect the best scores ATI and PS3 systems can achieve. Our ATI-based video cards were processing a work unit that gave 388 points, but there are work units that will give 548 points. Our PS3 was processing a work unit that gave 110 points, but there are work units that will give 330 points. The time for completing these units that give more points can be higher, however. Just as an exercise, we compiled the following table for systems four (ATI) and six (PS3) as if they were processing these other kinds of work units that give more points. We are doing this in order to not be accused of being unbiased or someone pointing out this potential flaw in our methodology in the future. For this exercise we will consider that the clients will process each work unit with the same performance, which may not be true in the real work.

System #

Client

Project (Points)

Time to Complete One WU (seconds)

Max. Daily Performance (Points)

Max. Monthly Performance (Points)

Points/kWh

4

GPU

4743 (548)

14,300 (HD 4850), 14,000 (HD 4870)

3,311 + 3,382 = 6,693

200,790

648

6

PS3

5305 (330)

26,100

1,092

32,760

347

As you can see, even simulating the best performance these systems could achieve, both performance and efficiency were at levels below our other systems.

From the above results we learned interesting things about our systems:

  • Our Playstation 3 achieved the lowest efficiency index (although in our simulation above it was more efficient that systems running only the SMP client, if it could only process work units that gives 330 points, which isn’t true), meaning that we were spending too much energy to produce too little points compared to our other systems.
  • System five was the most expensive to run, but was also the most efficient, meaning that it was the one that could produce the most points per kWh. On this system it was worthwhile to run the SMP client at the same time as our score and points/kWh index increased.
  • On systems two and three it wasn’t worthwhile running the SMP client at the same time with the GPU client: the points/kWh index dropped when we did that.
  • System four, which had two ATI high-end video cards, achieved a very low points/kWh index. This was the first system we decided to shut down: it was wasting a lot of energy to produce too little results.

Now we were curious to see if we used mid-range or even low-end video cards we would achieve better performance/power ratios. To do that we tested all video cards we had available.

Print Version | Send to Friend | Bookmark Article « Previous |  Page 4 of 7  | Next »

Related Content
  • TurboCache and HyperMemory
  • GeForce 7800 GTX Launch Coverage
  • MSI GeForce 7800 GTX Review
  • PowerColor Radeon X800 GT Review
  • HIS Radeon X800 GT IceQ II Review

  • RSSLatest Content
    NZXT S340 Case Review
    November 27, 2014 - 3:45 AM
    AMD A4-5000 CPU Review
    November 26, 2014 - 3:10 AM
    Samsung Galaxy Note Pro 12.2 Tablet Review
    November 25, 2014 - 3:00 AM
    ASUS X99-PRO Motherboard
    November 5, 2014 - 3:00 AM
    ASRock QC5000-ITX Motherboard
    November 4, 2014 - 3:00 AM
    Gigabyte X99-UD3 Motherboard
    October 30, 2014 - 8:30 AM
    ASUS X99-A Motherboard
    October 29, 2014 - 3:00 AM
    ASUS ZenFone 5 Smartphone Review
    October 15, 2014 - 7:00 PM
    ASUS AM1M-A Motherboard
    October 15, 2014 - 4:30 AM







    2004-14, Hardware Secrets, LLC. All rights reserved.
    Advertising | Legal Information | Privacy Policy
    All times are Pacific Standard Time (PST, GMT -08:00)