Hardware Secrets
Home | Camera | Case | CE | Cooling | CPU | Input | Memory | Mobile | Motherboard | Networking | Power | Storage | Video | Other
Content
Articles
Editorial
First Look
Gabriel’s Blog
News
Reviews
Tutorials
Main Menu
About Us
Awarded Products
Datasheets
Dictionary
Download
Drivers
Facebook
Links
Manufacturer Finder
Newsletter
RSS Feed
Test Your Skills
Twitter
Newsletter
Subscribe today!
Recommended
Maximum PC Guide to Extreme PC Mods
Maximum PC Guide to Extreme PC Mods, by Jon Phillips (Que), starting at $0.11


Home » Video
3D Glossary
Author: Gabriel Torres 24,873 views
Type: Tutorials Last Updated: April 26, 2005
Page: 1 of 2
Configuration Options

If you open the configuration menu of your favorite 3D game you will find several image quality configuration options. When we descrease the game image quality we increase the gaming performance. This occurs because there will be less things to be drawn on the screen, thus the graphics chip will have less to do. If you have a less powerfull VGA you can increase its performance by descreasing its image quality.

For newbies, however, the image quality configuration options look like Greek. In this tutorial we will explain the most common image quality related terms found in 3D games.

  • Anti-alising: This technique is used to smooth the "tooth saw" aspect of diagonally drawn lines. In 3D games this option can be usually configured at none or disabled, 2x, 4x or 6x (or low, med and high, in some games). The higher the value, the better the image quality, but slower the game will be. Also known as FSAA (Full Screen Anti-Aliasing).
  • Bilinear Filtering (interpolation): This filtering technique makes color transitions smoother. For example, if there is a transition between an yellow area to a red area the bilinear filtering will make the junction region of these two areas smoother (will create a color change from yellow to red).
  • Trilinear filtering: This filtering presents a smoother transition between colors than bilinear filtering, but makes the game slower.
  • Anisotropic filtering: This kind of filtering enhances the quality for images that are not on the conventional plan. To better illustrate this feature, remember Star Wars opening titles. As the letters go to the top of the screen, they become fuzzy and hard to read. Anisotropic filtering is used to get a sharper image and to not become fuzzy like in this example. This filtering can be usually configured as the number of samples used on the filtering process (2x, 4x, 8x, 16x). The highest the number of samples, the sharper the game image will be, but the game will be also slower.
  • MIP Mapping: A filtering method where the original texture is applied again over the object several times using smaller sizes. When the object is distant what sometimes happens is that the texture to be applied is larger than the object itself and the VGA has to "squeeze" the texture to make it fit on the object, creating an annoying visual effect called Moiré noise. With the MIP mapping enabled, a smaller texture - one that fits the object without the need of being "squeezed" - is applied, thus solving the problem. MIP mapping is actually an anti-aliasing technique.
  • Z-buffering: Traditionally the video memory stores only the color information for each pixel on the screen. With  z-buffering technique implemented, the video memory is also used to store information about the z axis (depth) of the image, thus increasing the rendering speed, since the VGA will know that objects hidden behind another objects don't need to be drawn. When z-buffering isn't used, a lot of calculations is needed to set the spacial position of each object on the screen and to know if one object is in front or behind another one.
Print Version | Send to Friend | Bookmark Article Page 1 of 2  | Next »

Related Content
  • Alternative Graphic Chips
  • TurboCache and HyperMemory
  • Enabling 2D Enhancements on GeForce 6 and 7 Series
  • PowerColor Radeon X800 GT Review
  • How to Use Battefield 2142 to Benchmark your PC

  • RSSLatest Content
    Samsung Galaxy Note Pro 12.2 Tablet Review
    November 25, 2014 - 3:00 AM
    ASUS X99-PRO Motherboard
    November 5, 2014 - 3:00 AM
    ASRock QC5000-ITX Motherboard
    November 4, 2014 - 3:00 AM
    Gigabyte X99-UD3 Motherboard
    October 30, 2014 - 8:30 AM
    ASUS X99-A Motherboard
    October 29, 2014 - 3:00 AM
    ASUS ZenFone 5 Smartphone Review
    October 15, 2014 - 7:00 PM
    ASUS AM1M-A Motherboard
    October 15, 2014 - 4:30 AM
    ASRock X99 Extreme4 Motherboard
    October 14, 2014 - 4:10 AM
    Cooler Master Elite 130 Case Review
    October 9, 2014 - 2:46 AM







    © 2004-14, Hardware Secrets, LLC. All rights reserved.
    Advertising | Legal Information | Privacy Policy
    All times are Pacific Standard Time (PST, GMT -08:00)